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Abstract

The following paper introduces a diagnostic concept which is able to find the origin cause of an observed
failure pattern by applying Boolean rules. The suggested method allows for and benefits from combining
failure notifications of several observers, expressed by indicators. Failure notifications about observed
objects are consolidated to one diagnostic result in order to provide a maintenance system with the best
fitting failure explanation pattern.

Kurzfassung

Das Betreiben technischer Einrichtungen und Systeme in einer Form, die es ermöglicht alle zugedachten
Funktionen erwartungsgemäß und sicher auszuführen, erfordert leistungsfähige und systemspezifische
Überwachungs-, Diagnose- und Wartungsprozesse. Diese Prozesse werden in aller Regel parallel zu den
operativen Funktionen ausgeführt. Sie sind sowohl für das Erkennen ungewollter oder unerwarteter Sys-
temzustände verantwortlich, als auch für die Lokalisierung der Fehlerursache im System und deren Kom-
munikation nach außen. Die Definition einer umfassenden Überwachung, Diagnose und Wartung schließt
die Forderung nach Zuverlässigkeit, Wartbarkeit, Sicherheit und die Erfüllung von Benutzeranforderungen
ein.
Der folgende Artikel stellt ein auf Bool’schen Regeln basierendes Diagnosekonzept vor, das in der Lage ist,
die systeminterne Ursache eines von außen beobachtbaren Fehlers sicher zu ermitteln. Die vorgeschlagene
Methode kombiniert dabei Zustandsmeldungen verschiedener Beobachter zu einem Gesamtbild. Fehler-
meldungen über beobachtete Objekte können in ein gemeinsames Diagnose-Resultat konsolidiert und für
effiziente Wartungs- und Reparaturvorgänge in dafür jeweils optimalen Abstraktionsgraden kommuniziert
werden.

1 Introduction

The operation of equipment belonging to a certain
system in a manner that it performs all of its in-
tended functions requires monitoring, diagnostics
and maintenance processes adapted to this system
and is usually running parallel to its operational
functions. These processes are used and responsible
for detecting unwanted or unexpected states as well
as for isolating and communicating their origins.
The definition of comprehensive monitoring, diag-
nostics and maintenance processes has to fit terms
like reliability, maintainability, safety and user re-
quirements in order to decrease system down times
and life cycle costs.

2 Basic Principles

Figure 1 shows the relationship between a monitor-
ing task at the beginning and maintenance at the
end of the process chain. Start and end tasks are
completed by confirmation, isolating and reporting.
Each predecessor task has to provide its respective
successor with all information needed to provide an
efficient and successful operation of the entire chain.

2.1 Monitoring

A basic condition for detecting and isolating faults
– which mean the inability to perform a required
function and the requirement of unscheduled main-
tenance action to correct this inability [1, 2] – and

Peter Tondl, Patrick Rammelt, Ulrich Siebel, Carmeq GmbH, 10587 Berlin, Carnostr. 4, Germany 1



Maintenance

Process

Diagnostic ProcessMonitoring Process

Monitoring Confirmation Isolation Reporting
Maintenance

& Repair

Figure 1: Monitoring, Diagnostics and Maintenance
Task Chain

failures – which mean the termination of the ability
of an item to perform its required function [1, 3] – is
an adequate working monitoring. Monitoring itself
means the process of continuously, periodically or
on-demand scanning of a defined set of equipment
functions. Often, at least regarding to complex elec-
tronic and mechanical systems, monitoring is real-
ized as a software function hosted on internal or
external equipment. However, this is not necessar-
ily true in any case. The term “monitoring” is much
more general and stands for a lot of different kinds
of automatically or manually performed actions in
order to determine the current state of a monitored
system.

Continuous and periodic monitoring is usually per-
formed during normal operation of the monitored
unit under the condition that the responsible moni-
toring task must not disturb operational functions.
For units where this requirement cannot be met
monitoring has to be performed at a particular time
when operational functions are not activated, e.g.
between power-up and operational function acti-
vation. On-demand monitoring can be seen much
more uncritical than the other types described be-
fore. Nevertheless it fulfills an important part of the
whole process, e.g. in case of a failure confirmation
or when it is performed under testing conditions.

2.2 Confirmation

A monitoring function is responsible for detecting
unwanted or unexpected states according to its mo-
nitored area. It transmits its observations to its pro-
cess level successor. In order to increase the relia-
bility of these detections and to avoid false alarms
a confirmation of an observed state shall be done.
Such a confirmation can be realized, e.g. by using a
monitored area depending time delay. During this
time a failure pattern must not change or disappear.
On the other hand, time cannot be used for confir-
mation if a fault or failure is the result of a singular
event. Moreover, a repetition is often not necessar-
ily representative, e.g. when a fault can cause an
observation only in a specific, not reproducible con-
text. In such cases it is recommended to activate

a self-test dependent on the observation under safe
conditions.

In case of latched failures – which mean failures
where a disappearance cannot be detected – a con-
firmation test has to be most efficient and reliable
to be “acceptable” when a confirmation result in-
dicates that the failure cannot be confirmed. Thus,
failure latching should not be used unless it is fully
required for safety reasons.

A confirmation process allows an interpretation of
observations with a certain level of confidence. How-
ever, if an observation cannot be confirmed, there
shall be no further consequences on the system as
well as no message transmissions to the next process
level.

2.3 Isolation

A single fault can cause multiple observations, i.e.
a complex failure pattern. Ideally, an isolation pro-
cess taking all observations into account leads to an
identification of exactly this single fault. A fault iso-
lation algorithm should therefore take advantage of
all information available, e.g. system design knowl-
edge, in order to produce acceptable results.
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Figure 2: Isolation by Observation – one informa-
tion flow IF1

Figure 2 shows a simple system where each compo-
nent comp = A,B,C,D,E is able to communicate
with each other. Wirings between these components
are not considered in the following descriptions.

Example 1 (Isolation – one information flow IF1)
Assume there is only one information flow IF1 at
time where component C transmits data packets
to component A via component B. In case of an
interruption, i.e. lost or damaged data packets, each
component of the IF1 chain can cause an observed
failure pattern “No valid data packets received from
C” observed by A. Thus, A,B and C can be the
cause of the fault and have to be presented by a
failure explanation result. �

Example 2 (Isolation – two information flows IF1
and IF2)
Under the condition of a second information flow
IF2 as depicted in fig 3 a much more precise failure
explanation result is possible: In case of a stable
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Figure 3: Isolation by Observation – two informa-
tion flows IF1 and IF2

data packet delivery from D to A, components A

and B are no longer able to explain the observed
failure pattern due to their successful involvement
in IF2. Thus, only C remains as possible cause of the
fault. On the other hand, if IF2 is disrupted as well,
component C alone is no longer able to explain the
current failure pattern but now only in combination
with component D: “No valid data packets received
from C and no valid data packets received from D”
observed by A. However, much more likely as this
double fault is a single faulty component A or B. �

2.4 Reporting

Failure explanation result reporting can be orga-
nized in different modes. As one option in a basic
mode a one-way only communication may be estab-
lished between an equipment and its higher level
entity for transmitting message frames more or less
regularly. As second option a two-way communica-
tion can be used as extended mode for obtaining
more detailed or additional information and per-
formed only under safe conditions.

2.5 Maintenance and Repair

The success of a certain monitoring task and espe-
cially of an isolating task implementation can be
measured from the relevance and accuracy of mes-
sages that are sent to the maintenance process. Suf-
ficient results can only be achieved through an effi-
cient implementation of these tasks.

Finally and regarding to [1], maintenance stands for
“all actions taken to retain material in or to restore
it to a specified condition. It includes inspection,
testing, servicing, and classification as to service-
ability, repair, rebuilding and reclamation as well as
all supply and repair actions taken to keep a force
in condition to carry out its mission.”

The diagnostic concept described in this paper is
able to find the origin cause of an observed failure
pattern. In most cases there is only one iteration
step necessary to fulfill this task successfully.

Nevertheless, it cannot be stressed enough that this
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Figure 4: Cooperation of Diagnostics and Mainte-
nance (Principle)

is not necessarily true in any case. Diagnostics can
only be successful in cooperation with adequate main-
tenance actions and is not finished until the system
state is completely shifted back to “healthy” inde-
pendently of the number of required iteration steps.
Figure 4 shows this principle of cooperation between
diagnostics and maintenance.

3 Fault Isolation by Boolean

Rules

As described in the chapter above monitoring and
confirmation are the basics of a diagnostic system.
Both tasks can be seen as parts of a monitoring
process performed usually by internal or external
equipment or system users like humans.

Figure 1 shows the monitoring process at the begin-
ning of the process chain. The diagnostic process –
consisting of an isolation and a reporting task – is
its successor and surely the heart of the diagnostic
system. The isolation task itself can be subdivided
into data acquisition, state detection, diagnostic en-
gine and result post-processing parts.

Data Acquisition

State Detection

Diagnostic Engine

Result Post-Processing

Isolation Task

Isolation Task Result

Figure 5: Isolation Task

3.1 Indicators

A failure pattern like “No valid data packets re-
ceived from C” as used in the example above to
explain an actual situation to a human reader is
usually not very suitable to explain the same cir-
cumstance to a software function. Thus, a more
standardized and regular pattern should be used in

Peter Tondl, Patrick Rammelt, Ulrich Siebel, Carmeq GmbH, 10587 Berlin, Carnostr. 4, Germany 3



order to perform the inter-process communication
faster and more reliable.

A simple solution to fulfill this requirement is the
use of indicators. An indicator is nothing more than
a placeholder for a certain observation or fault, ex-
pressed by an integer. Therefore, “No valid data
packets received from C” can be described simply
by sending an indicator like “10001” to the receiv-
ing entity in case of that both parts – sender as well
as receiver – know the meaning of “10001”.

In a more advanced version of this concept indi-
cators may possess properties, too. Such indicators
can then be used as operational state indicators to
“transport” environment data values like tempera-
ture degrees or voltage values.

3.2 Data Acquisition

The aim of a data acquisition function is to collect
data from all available sources to provide all sub
sequenced blocks with diagnostic relevant informa-
tion. Figure 6 shows the data acquisition block, ac-
quiring fault and operational states by using, e.g.
application programming interfaces of system mod-
ules, where it receives messages from queuing and
sampling ports.

CAN Ethernet MOST AFDX FlexRay . . .

Data Acquisition

Fault & Operational States

Figure 6: Data Acquisition

The Data Acquisition receives two main types of in-
formation: Fault state information and operational
state information. Fault states are fault detections
made by a monitoring process. Operational states
may indicate a faulty state as well but in general
they do not have to. In opposite to fault states op-
erational states have to be processed using the state
detection function first to indicate a fault state.
Finally, a table is generated including all current
states – represented by their indicators – and addi-
tional values in case of operational states.

3.3 State Detection

The state detection part of the isolation task is re-
sponsible for manipulating this table entries refer-
ring to observations which cannot be made by an
ordinary monitor. This means, e.g. the distinction
between a valid and a non valid observation of a
certain monitor depending on a respective system

configuration can be made by the State Detection
as in example 3. Furthermore, under certain circum-
stances there may be kinds of observations which
can only be made by the State Detection function.
In other words, this function acts as a system mon-
itor.

Example 3 (State Detection as higher level moni-
tor)
Given two temperature values of different system
parts, e.g. 50◦C and 80◦C. Both values are valid
data within their respective allowed temperature
ranges. Thus, regarding to their own measurements,
anything is perfectly all right. Nevertheless, this is
not necessarily true for the whole system when mea-
suring an identical item. A difference of nearly 60%
between both values, as in this example, is then cer-
tainly a symptom of a real problem. �
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Fault

State Indicators

State
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Fault

State Indicators
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Active Fault

State Indicators

Figure 7: State Detection

The state detection function prepares all indicators
which are needed by a subsequent diagnostic en-
gine. The indicators are based on fault and opera-
tional states and extracted from messages received
by the Data Acquisition as depicted in fig. 6. The
State Detection receives a table including all “inter-
esting” indicators from the Data Acquisition block
as input and calculates a list of active fault state
indicators. The meaning of “Active” in this case is
that all fault indicators – either sent by devices or
determined by the State Detection itself – are set
when they are necessary to find the origin(s) of the
observed failure pattern. To increase flexibility the
calculation process can be divided into sub-parts as
shown in fig. 7. The Diagnostic Engine is triggered
only in case of a non-empty active fault state indi-
cators list.

3.4 Diagnostic Engine

The following section gives a short introduction of
some basic ideas behind a possible Diagnostic En-
gine which is explained in more details in [4]. This
function allows for and benefits from combining fail-
ure notifications of several observers, expressed by
Fault State Indicators, as well as combining failure
notifications about several observed objects to one
consolidated diagnostic result.

Despite of concentrating on only one approach in
the examples below other solutions for diagnostic
engines are of course possible too, e.g. [5, 6, 7, 8].
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Dividing the isolation task into almost completely
independent sub-parts allows a large flexibility in
choosing the best fitting engine for a certain prob-
lem or system.
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Figure 8: Simple Test System

It will be helpful to consider the simplified system
depicted in fig. 8 as an example first. There, a de-
vice A hosts a diagnostics application and receives
data from a device C via a third device B. In addi-
tion, A hosts one application based monitor as well
as one hardware based monitor. The diagnostics ap-
plication itself gathers information about observed
failures from both monitors. Each device with its
respective drivers is seen as functional unit which
cannot be split up furthermore.
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Figure 9: Application based Monitor View

In spite of having some components in common the
system view of an application based monitor differs
totally from the system view of a hardware based
monitor. An application monitor is only able to ob-
serve its communication counterpart from a logical
point of view, i.e. whether it receives data from the
other side or not. It possesses no knowledge about
components that implement the link physically be-
tween the monitor itself and the origin of received
information.
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Figure 10: Hardware based Monitor View

In opposite to the logical system view of an applica-
tion monitor a hardware monitor is characterized by
a more physical system view. This means, a hard-
ware monitor’s view is always a point-to-point view
between the hardware monitor itself and the next
data packet termination point. A termination point

is usually implemented by a device which is able to
generate or terminate data packets, e.g. a regenera-
tor, router or gateway. Thus, a hardware monitor’s
view is restricted to the next active physical com-
ponent (fig. 10), whereas an application monitor’s
view is more related to a system wide view (fig. 9).

Example 4 (Application and hardware based mo-
nitoring)
Figure 11 uses a general data packet design to clar-
ify the different views of application and hardware
monitors. In order to detect a failure a hardware
monitor has to analyze at least the checksum of the
packet. By using the sum a valid packet can be dis-
tinguished from a damaged packet. The checksum
itself is generated by the related data packet as-
sembling device, e.g. the intermediate device B in
fig. 8.

Header Payload Checksum

Application Monitor relevant

Hardware Monitor relevant

Figure 11: Relevant Parts of a Data Packet for
Hardware and Application Monitor

Each time a data packet is split up into its com-
ponents due to a necessary conversion between dif-
ferent physical communication links, the checksum
has to be calculated again for the new data packet.
From a hardware monitor’s point of view it does
not matter whether the payload of the packet makes
sense or not, only the fact of a successful packet vali-
dation is important. Therefore, a hardware monitor
of a certain device is only able to observe the phys-
ical link to its next data packet termination point
where the current checksum has been generated be-
fore.

In case of receiving a valid data packet usually only
the payload is passed through to the respective des-
tination application. Thus, a receiving application
does not concern about packet headers or packet
checksums. However, there may be a mechanism
within the payload in order to validate the payload
itself. In opposite to a packet checksum a “payload
checksum” must not be generated again or changed
by a component of the communication link between
the origin application and the respective destination
application. Therefore, an application monitor of a
certain application is only able to observe the logical
communication link to its respective data source. �

The suggested diagnostic engine takes advantage of
these different system views especially in a simple
system as shown in fig. 8 above by using both ob-
servations for calculating the isolation task result.
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Table 1 shows the “Affect Chains” of the applica-
tion monitor and the hardware monitor. An affect
chain in general consists of all components – hard-
ware and software as necessary and useful – that
belong to a physical or logical link between the mon-
itor itself and the component observed by the mon-
itor. Referring to fig. 8 the affect chains consist of
device drivers and wirings between the application
monitor and device C on the one hand and between
the hardware monitor and device B on the other
hand.

Observer Affect Chain
AppMon A1,W1, B1, B2,W2, C1
HardMon A1,W1, B1

Table 1: Affect Chain Example

Example 5 (Fault Scenario B1)
Assume driver 1 of device B of our simple test sys-
tem (fig. 8) causes a problem. A resulting failure
pattern is then “No data received from device C”
by the application monitor and “No data received
from device B” by the hardware monitor. A com-
bining of these observations leads to an isolation
task result of “A1 or W1 or B1” as possible origins
of the failure pattern. B2,W2 and C1 can be ex-
cluded from the result, because no one of them is
able to explain both observations. �

Example 6 (Fault Scenario C1)
Assume driver 1 of device C causes now a prob-
lem. The resulting failure pattern is then “No data
received from device C” by the application moni-
tor and no complains by the hardware monitor. A
combining of these observations leads to an isola-
tion task result of “B2 or W2 or C1” as possible
origins of the failure pattern. A1,W1 and B1 can
now be excluded from the result, because none of
them can be faulty and explain that the hardware
monitor is still happy at the same time. �

3.5 Result Post-Processing

For maintenance purposes a result like “A1 or W1
or B1” has to be read as: “Check or replace compo-
nent A1. If the failure disappears maintenance ac-
tion is completed. If the failure does not disappear
proceed by applying the same procedure to W1. If
the failure disappears maintenance action is com-
pleted. If the failure does not disappear proceed by
applying the same procedure to B1”. In a best case
scenario a failure is found and corrected by check-
ing or replacing the first accused component of the
diagnostic result. To increase the success level of
this step-by-step procedure, components of a diag-
nostic result shall be presented to maintenance as

a sorted list. A simple failure cause is in most cases
more likely than a complex failure cause. Thus, an
appropriate list sorting criterion is “n-component-
failures before (n+1)-component-failures”.

In a worst case scenario a failure does not disap-
pear until checking or replacing each component
or component combination of the result list. The
reason for this behavior is caused by the Boolean
characteristics of the list. This means, a presented
result like “A1 or W1” does always include the re-
sult “A1 and W1”, too. An “or” connection be-
tween two components or component combinations
of a result list must not be interpreted as an “ex-
clusive or” connection. On the other hand, a result
that consists of a component combination like “A1
and W1” is only presented in case of that only a
combination of both components leads to an ex-
haustive explanation of the observed failure pat-
tern. In such a case always both components have
to be checked or replaced before a failure disappear-
ing test should be run by maintenance. The main
advantage of the proposed result presentation is a
higher efficiency level of maintenance actions. By
presenting a weightily sorted list it is highly un-
likely that each single component of the entire list
has to be checked or replaced before the observed
failure disappears. Moreover, the possibility of find-
ing the cause of a failure after only one maintenance
step might be very high.

4 Conclusions

A basic condition for detecting and isolating faults
and failures is an adequate working monitoring. Mo-
nitoring itself means a process of continuously, pe-
riodically or on-demand scanning of a defined set of
equipment functions. Usually, regarding to possible
complex electronic and mechanical systems, moni-
toring is realized as a software function hosted on
internal or external equipment.

A monitor function is responsible for detecting un-
wanted or unexpected states in its monitored area.
It transmits observations to its process level suc-
cessor. In order to increase the reliability of these
detections and to avoid false alarms a confirmation
of an observed state has to be made by the monitor
before. If an observation cannot be confirmed, there
should be no further consequences on the system as
well as no message transmissions in most cases.

A single fault can cause multiple monitored obser-
vations. Ideally, an isolation process taking all ob-
servations into account leads to an identification
of exactly this single root fault. A fault isolation
algorithm should take advantage of system design
knowledge in order to produce good results.
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The success of a certain monitoring and isolation
implementation depends on relevance and accuracy
of messages sent to the maintenance process. Suf-
ficient results can be achieved through an efficient
monitoring and confirmation process in combina-
tion with a highly powerful isolation process.

Monitoring and confirmation are performed at the
lowest level in touch with hard- and software of
the monitored items. Thus, it is reasonable to put
both tasks together to a monitoring process. Isola-
tion and reporting can be processed inside of the
system (“on-board”) or even outside (“off-board”).
As before, there are good reasons for joining both
tasks to a common diagnostic process, as depicted
in fig. 1. At the highest level remains the mainte-
nance process.

Because of being process level successor, quality and
accuracy of the maintenance process is highly de-
pendent on the quality and accuracy of the diag-
nostic process. On the other hand, because of being
process level predecessor of the diagnostic process
quality and accuracy of the monitoring process has
a deep impact to the quality and accuracy of the
remaining process chain.
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