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Abstract

This paper introduces a method for making probabilistic diagnostics in complex technical systems, e.g.
known from the automotive and the avionic sector. Using probabilities to account for uncertainties pro-
vides a natural way for sequencing suspected components, such that malfunctions could be eliminated
in a minimum of time or with a minimal loss of money due to avoidance of unnecessary actions. In the
approach presented here a probabilistic system is modeled by Bayesian networks.

1 Introduction

Diagnostics in technical systems mean to identify
and finally repair malfunctioning components within
a minimum of time and/or with the minimal loss of
money.
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Figure 1: Monitoring, Diagnostics and Maintenance
Task Chain [1]

Figure 1 shows the process chain for a diagnostic
system from monitoring (observing possible prob-
lems) over confirmation (e.g. by performing a self
test), isolation (see below) and reporting to the fi-
nal step called maintenance (“repairing”) - see [1]
for a more detailed description. In this paper we
will focus ourselves to the isolation task, which is
shown in more detail in fig 2 . “Isolation” means to
use all available information in order to narrow the
possible causes of a problem down to those which
are in accordance with the available information.
This task itself consists of several components: data
aquisition means to get all data needed; from this a
state detection generates indicators used by the di-
agnostic engine whose results could finally undergo
some post-processing. Here, we mainly describe an
approach for a diagnostic engine, also having a short
look at an expedient result post-processing technique.

Diagnostics in technical systems are still often based
on a “strict” kind of logic. Some systems explicitly
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Figure 2: Isolation Task [1]

use Boolean logic and the commonly known logi-
cal rules in order to detect faults - see [2] for an
example. Other approaches are implicitly based on
Boolean assumptions, in the sense that they do not
include any certainty factors provided with the list
of possibly faulty components (e.g. in [3]).

There are also other approaches using fuzzy logic
or (Bayesian) probabilities (e.g. in [4]). The main
advantage is that such approaches are able to sort
the resulting list of possibly faulty components by
the fault-probability of each component1.

One commonly used method to create consistent
probability models are Bayesian networks. The sys-
tems addressed in this paper include typically a
huge number of components and provide large sets
of indicators which are sensitive to several possible
malfunctions of these systems. One challenge of us-
ing Bayesian networks for such systems is to find
a structure which results in a Bayesian network of
manageable compact size (see also [5] and [6]). Even
if such a representation has been found it is still an-
other challenge to propagate the incoming informa-
tion about observed indicators through the network

1or even better by the expected loss for checking each
component, as described later in this paper
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and calculate the resulting posterior fault proba-
bilities for all components in an efficient way. We
will address both challenges in this paper: finding
a compact structure and propagating information
through the resulting Bayesian network.

2 Basic Principles

We will give basic definitions and basic principles
how Bayesian networks for diagnostic systems can
be created and which commonly known calculation
schemes are applicable for those networks.

2.1 Cause and Effect

This section gives a short overview about defini-
tions related to the probability-based diagnostic ap-
proach.

Definition 1 (Cause)
We will use the terms “cause”, “module” and some-
times “component” in a similar sense, where “cause”
is the most general circumscription for something
that potentially becomes subject to diagnostics, i.e.
something that could cause any trouble. �

Definition 2 (Effect)
Likewise we use the terms “effect” and “indicator”
both for the observable effects used to distinguish a
system that runs o.k. from one that is suffering from
any malfunctions. Trouble-codes which are readable
from the controller units of a system could be used
for that, but also any other (potentially) observable
effect could be an indicator. �

Definition 3 (Engine)
With the terms “(diagnostic) engine” or “system”
for short, we denote the whole Bayesian network2

and the procedures used to propagate information
through such a network. �

A B C D

I1Indicator / Effect:

Modules 

(Causes of 

the Effect):

Figure 3: Entities of a diagnostic system

2Apart from other nodes, such a network has one node
for each cause and each effect.

2.2 Causal Diagnostics

First, a system is described by a set of modules.
Depending on the system, modules can be hardware
components as well as software modules or anything
else which might suffer from malfunctioning3.

Second, the system is defined by a set of indica-
tors, which show the state of (parts of) the system.
Indicators are binary, i.e. saying “No problems” or
“Something’s wrong here”.

An indicator could be set by several causes, i.e. the
indicator cannot distinguish whether the problem is
due to a malfunction of module A or of module B.
Vice versa we can say that all modules connected
to an indicator must be o.k. if the indicator doesn’t
report any problem (not yet regarding any uncer-
tainties). The set of modules effecting an indicator
I1 and the set effecting an indicator I2 could over-
lap4. In order to isolate single causes it is in fact
essential that the sets of causes do overlap.

In our approach we use three types of probabilities:

• First of all, every cause has a prior prob-
ability for each possible state (e.g. “faulty”
and “healthy”). The sum over all prior prob-
abilities of one cause is 1.

• Second, for each effect there is one probability
that the indicator is set (indicating a prob-
lem) although none of the causes justifies the
setting (none of them is faulty). We call this
probability “false positive probability”.

• Third, for each connection between a cause
and an effect there is a “sensitivity” given,
i.e. the probability that the indicator is set
given the underlying component is in fact faul-
ty. If the cause has more than one fault-state
representing different fault-types, for each of
them a sensitivity has to be defined5.

2.3 Network Structure

The structure shown in fig 3 could constitute a
Bayesian network. The problem is that the proba-
bility table which has to be defined for each indicator-
node grows exponentially with the number of par-
ents (causes) in such a Bayesian network6.

3Module types could also be mixed.
4Two indicators can even have the very same set of con-

nected modules.
5It is also possible to define a sensitivity for the indica-

tor to be set given the causing module is healthy, but in
this paper we assume that value to be 0 for all cause-effect-
connections.

6In a Bayesian network, a conditional probability table
(CPT) has to be provided for each node. The CPT de-
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Figure 4: Three types of probabilities

To avoid this problem we introduce two types of
intermediate nodes:

• First, for every connection of a cause to an
effect node there is one sensor node added.

• Second, multiple levels of intermediate com-
binator nodes (ICN) are used. Each node
combines two nodes from the previous level.
For an effect-node having one or two causes
no such node is needed. For three causes one
ICN is needed, for four causes two ICNs on the
same level are needed. For 8 causes 4 ICNs on
the first and two ICNs on the second level are
needed - and so on.

As shown in fig 5, in this structure we can easily
introduce the three types of probabilities mentioned
in section 2.27.

The structure could be either created from experts
knowledge or from a wiring diagram or other tech-
nical descriptions. Likewise, the probabilities could
be given by experts or taken from known failure
rates, reliabilities, etc.

3 Propagation

The advantage of using bayesian networks is, that it
is not necessary to observe all indicators at a time.
There might be circumstances where only a sub-
set of all observable indicators are in fact available.
On the other hand, observations are not limited to
the indicator-nodes. It is possible to include direct
knowledge about some causes as well. For example
if in a first run of the diagnostic system a compo-
nent A has been detected to be the most probable

fines the probability for each state given all possible state-
combinations of all parent nodes.

7In this example the tables given for the effect-node and
all intermediate combinator-nodes represent a probabilistic
OR operator. Using other settings for these tables, it is also
possible to create “AND combinator” nodes or even “XOR
combinator” nodes.
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Figure 5: Conditional probability tables for a diag-
nostic type Bayesian network

reason for a detected malfunction, but that compo-
nent was checked and found to be healthy, then this
observation could be fed into the bayesian network
and is used for a second run8.
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Figure 6: System of 48 causes and 3 effects, where
causes and effects are fully connected

To propagate evidence (observations) through a bayesian
network and to calculate the resulting posterior prob-
abilities for all nodes not directly observed there are
different approaches:

• Sampling methods (e.g. Gibbs-Sampling - see
[8]): these methods are often usable for net-

8it is even possible to give that information with a prob-
ability, e.g. saying “I have checked component A and I am
80% sure that it is ok” (such evidence is called soft-evidence
- see [7] for a more detailed explanation)
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works where the junction-tree approach is not
applicable, but have the disadvantage that the
results are only approximate and that they
are more time-consuming than propagation in
junction-trees. Even worse, for some proba-
bility distributions and/or evidences they will
fail completely.

• Junction-Tree methods (e.g. HUGIN propa-
gation - see [7]): these methods lead to the
exact posterior probabilities but might be too
complex for some network structures.

• Loopy-Belief-Propagation: This method is based
on the approach introduced by Perl (see [9])
for tree-like-structures. While for tree-like net-
works the results will converge to the correct
values, this cannot be guaranteed for “loopy”
network-structures. Nevertheless, surprisingly
often the results are quite good (see [10] and
[11]).

3.1 Sampling Methods

Generally speaking, sampling works as follows:

First create a full configuration:

1. Start at the parentless nodes and create (sam-
ple) a state out of the prior probability distri-
bution given for every such node.

2. Now the states for all nodes having only par-
ents with states already known (sampled) could
be sampled in turn from the conditional prob-
ability table for P (A|Parents(A)).

3. Redo the last step until a full configuration
is found, i.e. until for every node, a state has
been sampled.

Likewise, create N full configurations. From all con-
figurations, estimate the posterior distributions for
every node by taking the fraction:

P (A = a1) ≈ #(A = a1)

N
(1)

If evidence is given, then all configurations which
are not in accordance with the evidence are rejected.
Thus sometimes nearly all configurations will be re-
jected. Gibbs Sampling reduces this problem:

After a starting configuration (which is in accor-
dance with the evidence) has been found it resam-
ples all Nodes N − 1 times given the current states
of all other nodes.

Unfortunately, the type of networks used in this pa-
per together with the fact that normally the effects

(not the causes) are observed, does not permit the
use of sampling methods.

• First of all, malfunctions are rare cases, which
means that diagnostic scenarios cover a tiny
part of the whole distribution only. Hence, big
numbers of sampled configurations are needed
to estimate the posterior distributions.

• Second, it is very likely that the initial con-
figuration is not representative for the whole
distribution, because the probability that any
component is sampled to be faulty is very low,
i.e. most probably the sampled configuration
represents a false alarm of the set indicators.

• And finally, it is nearly impossible for the gibbs-
sampler to escape from this “false alarm sce-
nario” and get to a scenario where one or even
more components are assumed to be faulty.
The naive sampling method on the other hand
will have to reject nearly all sampled configu-
rations.

3.2 Junction-Trees

A Junction-tree is a calculation-model built from
a bayesian network. In a junction tree cliques of
nodes of the original bayesian network forming the
nodes of the junction tree. These clique-nodes are
connected by undirected links, such that a tree-like
structure is created9:

Definition 4 (Tree)
In a tree, between every two nodes A and B, there
is exactly one path connecting A and B, where, in
such a path, each link could occur only once.10 �

The links in a junction tree are called separators.
A separator represents the subset of nodes included
in both connected cliques.

Definition 5 (Separator)
Let S1,2 be a separator connecting two Cliques C1

and C2, where C1 contains nodes {C1} and C2 con-
tains nodes {C2} respectively, then S1,2 contains
the nodes {S1,2} = {C1} ∩ {C2} �

To be valid, the junction-tree must meet the follow-
ing condition:

Definition 6 (Junction-Tree)
Every node A which occurs in two Cliques C1 and
C2 (A ∈ {C1} ∧ A ∈ {C2}) must also be contained
in all cliques (and separators) on the path between
C1 and C2

11. �
9or a forest of disconnected trees, which can be seen as

single junction trees each
10Notice: This is a definition usable for structures of undi-

rected links (we do not need terms like “root” or “leaf”)
11Remember: since it is a tree there is exactly one path
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The latter condition could be achieved by moral-
izing and triangulating the bayesian network and
take the cliques from the resulting structure.

Definition 7 (Moralized Graph)
To create a moralized graph from a bayesian net-
work, all parents of common children get connected
by an (undirected) link if they are not already di-
rectly connected. Afterwards, all originally directed
links get substituted by undirected links. �

Definition 8 (Triangulated Graph)
A graph is called triangulated if for every cyclic
path over more than three nodes there is a “short-
cut” link which is not part of the path and which is
directly connecting two nodes on the path. �

Definition 9 (Clique)
The cliques are formed by the largest sets of fully
connected nodes of a moralized and triangulated
graph. �

Definition 10 (Largest fully connected Subsets)
A subset of nodes is fully connected if for every two
nodes A and B in that subset there exists a link
connecting A and B. Such a subset is called the
largest subset if no node could be added without
violating the previous condition. �

One method for triangulating a (moral) graph and
identifying the cliques is the “elimination-algorithm”.
This algorithm works as follows:

1. Eliminate one node A from the graph and
connect all neighboring nodes of A. A and all
its neighbors forming a new clique unless this
clique would be a subset of another clique.

2. Go on with step 1 until all nodes have been
eliminated.

The junction-tree then is formed by using the largest
separators which do not violate the definion of a tree
given before.

Since for every clique Ci the joint probability table
P ({Ci}) is created, the aim is to keep the cliques as
small as possible. Therefore the quality of a junction-
tree depends on the triangulation which in turn de-
pends on the order in which nodes were eliminated.
Finding the best elimination-order is NP-hard for
general network structures. A method to find the
best triangulation for our restricted type of net-
works is subject to ongoing analysis.

Figure 7 illustrates the best elimination order found
so far. Shown are the ranks for all nodes used to
determine the elimination order. Lower ranks must
be eliminated before higher ranks. The rank of the
cause-nodes depends on the number of effect-nodes.
Unfortunately, this algorithm only works for struc-
tures where all indicators are connected to all ef-

fects. To achieve this condition “dummy” sensor-
and intermediate connector-nodes can be used. A
dummy sensor node has 1 state instead of two and
has no effect on the probability distribution mod-
eled by the bayesian network. For a sparse con-
nected structure, a normal one-step-look-ahead ap-
proach might find a better elimination order (see
figure 8, small detail-plot) - for complex networks
the AST-algorithm is much better (see figure 8, big
plot).
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Figure 8: Number of parameters of a junction tree
for the currently best triangulation (solid plot) vs.
the number of parameters of a normal one-step-
look-ahead elimination

Nevertheless, for very complex networks, namely
where many causes are connected to many effects,
this approach will fail, even if a perfect triangula-
tion could be found. In figure 9, the resulting num-
ber of parameters for the best triangulation algo-
rithm found so far is shown. It can be seen that the
number of parameters grows linear with the num-
ber of causes, but exponential with the number of
effects. This makes junction-trees inapplicable for
situations where more than 8 effects are connected
to a set of common causes.

3.3 Loopy Belief Propagation

Loopy belief propagation seems to be a promising
solution for networks where junction-trees aren’t
applicable any more. Most important: the calculation-
model has the same size as the underlying bayesian
network12.

For a loopy belief propagator we also create a struc-
ture of cliques and separators. In contrast to the
junction-tree approach, for every node and its par-
ents, one clique is created (again cliques that are

12in fact it is even slightly smaller

Patrick Rammelt, Peter Tondl, Ulrich Siebel, Carmeq GmbH, 10587 Berlin, Carnostr. 4, Germany 5



A B C D

ABCD1

A1 B1 C1 D1

AB1 CD1

ABCD2

A2 B2 C2 D2

AB2 CD2

E F G H

EFGH1

E1 F1 G1 H1

EF1 GH1

EFGH2

E2 F2 G2 H2

EF2 GH2

I1

I2

3

2

3

2

3

2

3

0

0

9

8 9

8

5

56 6

1, 4, 7, …

depends on the 

number of effects

56

2

Figure 7: Elimination ranks for the adaptive stable triangulation algorithm (AST)

0
10

20
30

40
50 0

2
4

60

2

4

6

8

10

12

x 10
4

Effects

Causes

P
a
ra

m
e
te

rs
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subsets of other cliques could be omitted). If two
nodes A and B are connected, the cliques contain-
ing these nodes (e.g. C1 and C2) are also connected
by a separator-link. The resulting structure is loopy
if the underlying bayesian network is loopy.

Definition 11 (Loopy Graphs)
A graph is called “loopy” if it contains at least one
path containing more than one node with the same
start and end node. The direction of links is ignored
here! �

A first analysis has shown that the convergence
is fast and errors are tolerably small. This has to
be evaluated in more detail, especially the circum-
stances leading to the maximum error are not yet
fully understood.

3.4 Hybrid Solution

A hybrid type solution might be favored in the end:
using junction-trees for clusters of the system with
low complexity and loopy belief propagation for clus-
ters of high complexity. . .

4 Result Post-Processing

Knowing the most likely cause of a malfunctioning
system is one thing, but sometimes not enough to
make the optimal decision. Imagine the following
situation: A component A is the most probable de-
fect (P (A = faulty) = 80%) and there is another
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component B also suspected but with a much lower
probability (P (B = faulty) = 10%). Normally it
is best to check A first, but if that would be very
expensive, say 100,-e, while checking B is cheap,
say 10,-e, then things might change.

Formally the expected loss EL of checking a com-
ponent X is defined by

EL(X) = P (X = ok) ∗ Cost(X) (2)

If one wants to find the cause of a malfunction with
a minimum loss, one should start with the com-
ponent with the minimum expected loss. The cost
could also be defined as a cost of time instead of
money, if the target is to find the cause(s) as fast
as possible.

5 Fault Isolation with Bayesian
Networks

In this section some examples are presented. Start-
ing with those examples which are straight forward
- i.e. the results are essentially the same as for an
approach using Boolean logic - except that each sus-
picion is quantified by a probability. Afterwards an
example is presented where the Bayesian and the
Boolean approach differs substantially, followed by
an extended version where sensors are not restricted
to be binary anymore. Finally it is shown that the
ability to identify all possible configurations of mul-
tiple faulty components at once, which is one big
advantage of the Boolean approach, could be real-
ized also in the Bayesian approach, at least for the
one most probable such configuration.

5.1 Straight forward Examples

A B C D

I1

E F

I2

C
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 1
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 2

Prior = 0.01
for all Modules

Sensitivity = 0.9
for all Sensors of I1

Sensitivity = 0.8
for all Sensors of I2

False Positive = 0.001 for I1

False Positive = 0.002 for I2

Figure 11: Setting of parameters for a system with
two effects and six causes

Figure 11 shows an example with two indicators I1
and I2 with two common causes C and D. The prior
probabilities of all causes are equally chosen to be
1%. Indicator I1 is slightly better than I2 because
the false positive probability is less for I1 (0.1% vs.
0.2%) and the sensitivities are higher for I1 (90%
for all causes vs. 80%).

Indicators Causes

I1 I2 A B C D E F

1: ? ? 1 1 1 1 1 1

2: ? ? (100) 1 1 1 1 1

3: (0) (0) 0.1 0.1 0.02 0.02 0.2 0.2

4: (100) (0) 40 40 8 8 0.2 0.2

5: (100) (0) (0) 66 13 13 0.2 0.2

6: (100) (0) (100) 1 0.2 0.2 0.2 0.2

7: (100) (100) 2 2 49 49 2 2

8: (100) (100) 48 48 (0) (0) 45 45

9: (100) (100) (100) 1 (0) (0) 45 45

10:∗) (100) (100) 40 4 32 32 41 4

∗)Priors for A and E changed from 1% to 10%

Table 1: Example settings for the system shown in
fig 11 (values in brackets are observed)

Descriptions referring to table 1

1. If nothing has been observed, the Bayesian
network just gives the prior probabilities for
all causes (i.e. 1%).

2. If A is known to be faulty, while nothing else
is known, the prior probabilities for all other
causes still are 1% - i.e. causes are indepen-
dent of each other.

3. If both indicators are observed and none of
them shows any problem, then the priors fall
to 0.1% for A and B, to 0.2% for E and F 13

and down to 0.02% for C and D14

13Remember I1 is a better indicator than I2
14Notice that C and D having two indicators saying “ev-

erything is fine”, while all other causes having just one indi-
cator
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4. If only I1 reports a malfunction, then A and
B are the most probable causes (40% each)
while C and D get released by I2 (i.e. I2 says
“C and D are o.k.”). E and F aren’t affected
at all.

5. If, in addition, A has been observed to be ok,
then B is the most probable cause (66%).

6. If A has been observed to be faulty instead,
then B gets released because A fully explains
why I1 has detected a malfunctioning.

7. Now both indicators are set. In this situation,
C and D are the most probable causes, be-
cause only C or D could each alone explain
why both indicators are set. All other expla-
nations would need two causes (e.g. A and E)
to be faulty at the same time.

8. If both most probable causes have been ob-
served to be ok, then it must be in fact a “dou-
ble fault”. Now all remaining causes get high
fault-probabilities (48% for A and B, 45% for
E and F )

9. Now, if A has been checked and has been ob-
served to be in fact faulty, then the probability
for B falls to 1%, while the probabilities for E
and F stay the same. That is because at least
one of E and F must be also faulty to explain
why I2 is set.

10. If the prior probabilities for A and E are much
higher (10% instead of 1%) then a “double
fault” is more likely than the single fault ex-
planations C or D.

5.2 Overruling Indicators

Chain 2A C

I1

I2

Chain 1

I3

Sensitivity=0.9Sensitivities=0.9

Sensitivities=0.8

False Positive=0.001False Positive=0.001

False Positive=0.002

All priors=0.01

B

Figure 12: Setting of parameters for an example
with three effects and causes

Imagine that in the system shown in Figure 12 the
two indicators I1 and I2 are set while the third in-
dicator I3 is unset. Normally (using a Boolean ap-
proach) we would expect A and C to be identified

as the most probable causes, because B is released
by I3. But even though I3 is not worse than I1 and
even better than I2 it is not yet “good” enough to
favor a “double fault” of A and C over the assump-
tion of a single faulty component B. That is why B
is in fact the most likely cause - i.e. it is more likely
that I3 is wrong than a “double fault” of A and C.

5.3 Non-Binary Causes

Figure 13 shows an adaptation of the system al-
ready known from figure 11 . In this example the
node C has three fault states instead of one (plus
one state for being healthy). The first fault state
here means a complete failure of the component C
while the latter two fault states represent different
partly failures, which are detected by two indicators
with different sensitivities.
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Sensitivities of of I2 on C:

Priors of C:

Sensitivities of of I1 on C:

bad sensitivity

for “partly1”

bad sensitivity 

for “partly2”

Figure 13: Setting of parameters for an example
where one cause has three states

Indicators Causes

I1 I2 A B C D E F

f p1 p2
1: (100) (0) 30 30 6 25 1 8 0.2 0.2

2: (100) (100) 2 2 41 11 6 41 2 2

Table 2: Example settings for the system shown in
figure 13 (values in brackets are observed)

The following descriptions refer to table 2

1. I1 is set while I2 is not. C can not be com-
pletely defect (because I2 would have been set
then), but it could be partly defect (because
I2 is not sensitive on the state partly1).

2. If both indicators are set, C is likely to be
completely faulty, because being only partly
fault could not explain this scenario.
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5.4 Finding Fault-Configurations

In the previous section we have seen examples where
one single faulty component could fully explain the
setting of indicators and examples where more than
one component has been faulty. Unlike in the Boolean
approach described in [2] we could not distinguish
these situations - i.e. we don’t know which com-
ponents have to be faulty all together to fully ex-
plain the given scenario of set / unset indicators.
Using junction-tree algorithms or loopy belief prop-
agation it is possible to identify one such set in one
shot15 - and (fortunately) that turns out to be the
most likely set of components. This method is called
Max-Propagation (see [7]). In figure 14 an exam-
ple is shown where the most likely configuration
is that A and F are both faulty, after C and D
have been inspected without success. Notice that,
although A and B are the components which are
most likely faulty (according to the normal propa-
gation scheme), it is very unlikely that both of them
are faulty. On the other hand it is also very unlikely
that A is the only faulty component because a mal-
function of A could not explain why indicator I2 is
set. Both could be seen - using the normal propaga-
tion scheme - by adding the observation that A is in
fact faulty and propagate again. Doing so, one will
see that the probability of B falls to a minuscule
value, while the probability for E and F remains
unaltered. Now, using Max-Propagation we are able
to find that A and F are most likely both faulty in
one single propagation.

It is most likely that A 

and F are (both) causes 

of both indicators

A B C D

I1

E F

I2

set (100%)

set (100%)

48% 47%

44% 45%0% 0%

Figure 14: A double fault is the most likely expla-
nation (after C and D were observed to be o.k.)

6 Learning from Data

As mentioned in section 2.3 the structure as well as
the probabilities could be determined from techni-
cal sources like wiring diagrams, failure rates, and
the like. In this section we will discuss another ap-
proach: learning structure and probabilities from
data.

15just as expensive as a normal propagation-run

6.1 Learning the Probabilities

Since we use extra nodes which are pure “virtual”
there will never be complete data for all nodes. Dif-
ferent approaches for learning parameters from in-
complete data are available. One of it is the “Ex-
pectation Maximization Algorithm” (EM). It works
as follows:

Init: Set all CPT’s (which should be adapted) to
randomized distributions, which are not con-
taining the values 0 or 1 and which are not
uniformly.

Expectation: Set all data available for one time-
step t to the network and propagate the in-
formation through the network. Repeat that
for all time-steps of the given dataset and take
the sum of all resulting posterior distributions
in contingency tables for each node.

Maximization: Set the conditional probabilities
by normalizing the contingency tables for each
node.

Iteration: Repeat from step 2 for a fixed number
of iterations or until some convergence criteria
is met.

This could be used for the type of networks de-
scribed in this paper. The algorithm just won’t adapt
the probabilities which are fixed anyway - i.e. those
that are set to 0 or 1.

6.2 Learning the Structure

Learning the structure is also possible. Several cri-
teria for rating structures are known (e.g. [12]). A
greedy search algorithm (also described in [12]) could
be used. In our case we won’t add single links but in-
corporate a connection from a cause to an effect over
several intermediate nodes (sensors and intermedi-
ate connectors). Then we rate all possible new con-
nections independently and take the best of them
unless it doesn’t improve the model. Since data is
incomplete due to the “virtual” intermediate nodes,
we have to learn the parameters by using the EM-
algorithm described before in section 6.1 for each
adaptation we make before we can rate it.

7 Special

This section shows some special cases, to which the
system could be easily adapted to.
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7.1 Logical Operations

The conditional probabilities shown in figure 5 for
the indicator node and the intermediate combinator
nodes representing an OR-combination of two par-
ent nodes. The top indicator node includes the false
positive probability, while the intermediate nodes
are purely logical.

This represents an indicator which is set if any of
the connected causes is true. This might not be ade-
quate for all systems - e.g. some indicators might be
set only if all of the connected causes are true. It is
possible to set the probabilities such that the node
performs an AND or even a XOR combination of
its parent nodes. The conditional probabilities are
shown in figure 3

AND
I

A B set unset

set set 1 0

set unset FP ∗) 1− FP

unset set FP ∗) 1− FP

unset unset FP ∗) 1− FP

XOR
I

A B set unset

set set FP ∗) 1− FP

set unset 1 0

unset set 1 0

unset unset FP ∗) 1− FP
∗) FP is the false positive probability for top indicator

nodes and 0 for intermediate combinator nodes.

Table 3: AND-combinator (top) / XOR-combinator
(bottom)

7.2 Directly dependent Causes

As we have seen from the examples given in section
5.1 table 1 case 2 that causes are independent of
each other. There might be systems where a mal-
function of one or more components might directly
lead to a malfunction of another component. This
could be modeled the same way relations of indica-
tors and causes are modeled - e.g. a component E
which probably show a malfunction if component A
or B or C or D is faulty could be modeled by re-
placing I1 by E in figure 5. There is one important
limitation inherent to that model: as an indicator
such a cause could have two states only.

8 Dynamic Systems

Until now all systems were assumed to be “static”
- i.e. all information used by a diagnostic system
is created by making a “snap-shot” of the states
of the system (states of the indicators and already
checked modules). For highly dynamic systems we
might want to use the information from previous
time-steps as well. To account for dynamic systems
we extend the approach developed so far by using
two additional probabilities for each module. Now
for each module three probabilities are required:16

• A failure probability, which is the probability
for a healthy module to show some malfunc-
tioning in the very next time step.

• A regeneration probability, which is the prob-
ability for a faulty module to be ok again in
the very next time step.

• The prior probabilities already known, needed
for the very first time step where modules
haven’t got any ancestors in previous time
slices.

0.9970.003healthy

0.0010.999faulty

healthyfaultyD
t-1

Dt

A B C D

I1

Failure Probability

A1 B1 C1 D1

AB1 CD1

P(D1 | D)

Regeneration Probability

Figure 15: Additional parameters for dynamic net-
works

8.1 Dynamic Propagation

Different approaches have been discussed for creat-
ing junction trees for dynamic bayesian networks.
One solution is to “unroll” the bayesian network for

16Both new probabilities (the failure and the regeneration
probability) highly depend on the sampling rate and will be
tiny for most systems.
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a given number of time steps and create a junction
tree for that network. Unfortunately this approach
has some drawbacks:

• The number of time steps must be known be-
fore any propagation could be done

• The propagation will calculate over all time-
steps even if the observations and the nodes
of interest all lying in a defined time-window
(which moves from time-step to time-step)

Another solution is to create a dynamically adjustable
junction tree, which contains the nodes of a given
time-window only. To create such a “dynamic junc-
tion tree”, all the nodes having dynamic links must
be combined into one single clique (the “dynamic
clique”) - otherwise the resulting structure wouldn’t
be a tree. Unfortunately this is impossible for sys-
tems having many time dependent nodes, because
the dynamic clique grows exponentially with the
number of contained nodes. Therefore a loopy be-
lief propagation scheme should be used, even if the
module for a single time slice is a real junction tree.

current time windowremove add

Forward

Backward

Figure 16: A dynamic junction tree

9 Conclusions

Using probabilities to represent the uncertainties,
naturally occurring in diagnostic applications, is a
promising way to overcome some of the limitations
of traditional diagnostic systems. We have presented
a method to create a compact consistent probability
model representing a technical system as a bayesian
network. A challenging task for the future will be
to find a propagation algorithm which provides the
best tradeoff between accuracy and complexity for
such Bayesian networks.
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